

CU 63: Certification, qualification and standards (2nd Stage Pilot)

Day 3 – Planning and executing CQS

Prepared by: David Wimpenny

Date: 09/05/21

Welcome and plan for this final training session

- ~next 2 hours presentations on implementing CQS
 Then
- Complete the end of course questionnaire
- Under take the course assessment

You need to do both to ensure that you can be issued with a certificate for completion of the course

Topics to covered today

- Quality management system The framework
- Traceability & documentation The foundation
- Impact of CQS on the business Practical implications

DAY 3 PART 1

09.00 TRAINING ~45 MINS

> Co-funded by the Erasmus+ Programme of the European Union

Quality Management

Quality management means what the organization does to;
 o ensure that its products or services satisfy the customer's quality requirements

and

 comply with any regulations applicable to those products or services (ie CQS).

REF: Overview of ISO 9001 and ISO 14001 by Roger Frost e-mail <u>frost@iso.org</u> Manager, Communication Services2009-01-08

What is a Quality Management Systems (QMS) ?

"Collection of policies, procedures, plans, resources, processes, practices, and the specification of responsibilities and authority of an organization designed to achieve product and service quality levels, customer satisfaction and company objectives..."

It is an essential element to ensure that CQS is implemented and adhered to within an organisation

Ref:https://www.academia.edu/19670615/Dave_John_Mike_Quality_Management_Systems_PPT_03

QMS Standards

Provide the organization with an international, state-of-the-art model to follow

ISO 9001 - quality management system industry generic

AS 9100 – quality management system for aviation space and defence

Principles of the ISO 9001 Standard

- 1. Customer Focus
- 2. Leadership
- 3. Involvement of People
- 4. Process Approach
- 5. System Approach to Management
- 6. Continual Improvement
- 7. Factual Approach to Decision Making
- 8. Mutually Beneficial Supplier relationships

Ref:https://www.academia.edu/19670615/Dave_John_Mike_Quality_Management_Systems_PPT_03

https://advisera.com/9001academy/knowledgebase/how-to-structurequality-management-system-documentation/

https://advisera.com/9001academy/knowledgebase/how-to-structurequality-management-system-documentation/

Procedures

Step by step what the company does to meet policy

- Procedure for each ISO principle
- Processes for procedures that affect quality

https://www.iso-9001-checklist.co.uk/quality-manual-template-gbp.htm

Work Instructions

Document containing detailed instructions that specify exactly what steps to follow to carry out an Activity. A work instruction contains much more detail than a Procedure and is only created if very detailed instructions are needed

Work Instructions

Records and Forms

https://advisera.com/9001academy/knowledgebase/how-to-structurequality-management-system-documentation/

Records & Forms

- Proof of activities
- Documentation for auditors
- Ensure consistency of the firms operations
- Verify conformance to standards

Traceability

- The foundation of CQS
- It is <u>not</u> enough to follow a process
- You need to be able to prove you followed it
- Particularly when something goes wrong !

Co-funded by the Erasmus+ Programme of the European Union

What is Traceability in Additive Manufacturing

- Covers all stages of AM process from feedstock procurement to production of AM parts, post processing, part testing, distribution or disposal need to be traceable.
- For an AM facility both **chain** (supply of goods/services from outside of the business) and **internal** traceability need to be considered

Documentation for Traceability in AM

- Documentation of intended work
- Record Keeping of what has been done

)p	Description					Comments			
		Copy of order info				e.g. PO or email Required for Op 10			
		Owner				Required for Op 20; Op 40; Op 50			
10	Request info from Originator	Specific uses				Required for Op 40; Op 50			
		Project code				Required for Op 60; Op 61			
			Order Info	Deliver	v				
		Base material							
		Alloy				Info required for Op 20; Op 40; Op 50			
	Collect delivery from Goods In &	Nominal size (µm)				Operators must be manual handling trained			
10	compare delivery labelling against	Date receipted				Lifting aids may be required			
	order mit	External company 1				Knife may be required			
		External company 2				External Companies = Supplier and / or manufacturer			
		External batch ID							
11	Op 10 review gate	Powder Management	Accept / Flag Initial			All info in Op 10 matches \rightarrow Accept and go to Op 20 Any info in Op 10 does not match \rightarrow Flag and go to Op 12			
12	Op 11 flagged	PO Originator	Accept / Reject Initial			Accept \rightarrow Powder Management to continue from Op 20 Reject \rightarrow Originator to contact supplier			
20	Check whether validation testing is required (see Decision Workflow)	Is validation testing required?	Yes /	No		Yes → Book into Quarantine No → Book into Storage			
			Order Info	Actual		Required for Op 40; Op 50			
		Quantity	kg		kg				
30	Book the delivery in	No of containers				Required for Op 40; Op 50			
		Location	Storage / C	uarantin	e	Refer to Op 20			
		Inventory completed?	C]					
31	Op 30 review gate	Powder Management	Accept / Flag	Initial		Quantity in Op 30 matches \rightarrow Accept and go to Op 40 Quantity in Op 30 does not match \rightarrow Flag and go to Op 3			
32	Op 31 flagged	PO Originator	Accept / Reject	Accept / Reject Initial		Accept \rightarrow Powder management to continue from Op 40 Reject \rightarrow Originator to contact supplier			
	Assign MTC Batch ID and update	MTC Batch ID	MTC			Required for Op 50			
	powder tracker	Tracker updated?							

Not Just About Documentation You may need to retain samples: OWitness samples OPowder samples

mtc

MTCOO

Witness samples

- Some of the things which can go wrong \circ Not built !
- \circ Not built at the same time as the parts !
- \circ Not the correct location, orientation or parameters !
- \circ Not labelled properly $\, ! \,$
- OLOSING them (or disposing of them)

Build preparation sheets significantly reduces the risk

Question ?

- 1.What is the aim of the witness samples ?
- 2. What are the limitations ?

Chain Traceability in Additive Manufacturing

 Feedstock requirements need to be retained (a proposal, copies of emails, excel spreadsheet)

Procurement e-form and **purchase order** are evidence of the conformity of the ordered feedstock to specified requirements

Information captured:

- Supplier details
- Product description
- Material type
- Alloy name
- Alloy specification
- Quantity
- Nominal particle size
- Customer purchase order

Feedstock receipt & storage

Certificate of Conformity (CoC)

Information captured:

- Supplier
- Customer Purchase Order
- Alloy name
- Supplier batch number
- Dispatch number
- Weight
- Nominal particle size
- Alloy specification
- Number of certificate of analysis

Powder tracker is a log of all powder batches in stock

Information captured:

- MTC batch ID
- Supplier batch number
- Date receipted
- Manufacturer
- Initial weight and a number of containers
- Current weight and a number of containers
- Location
- Material type, alloy name, nominal particle size
- AM process, AM machine
- Feedstock status (active, retired, top-up, quarantined, exhausted, not in use, contaminated)

Feedstock testing

Sample testing log

• The log of all powder samples tested

Information captured:

- Materials Lab Sample ID
- MTC batch ID/supplier batch number
- Sample description (e.g. project name, project code, build ID)
- Material
- Alloy name
- Weight
- Date
- Additional information
- All samples and material test data are labelled in a standardised way and can be identified using the Materials Lab Sample ID

Chain Traceability in Additive Manufacturing

EXAMPLE from MTC

AM Production Pack

	4																				
n	ÌΓ									w	OR-00	14-F8 (V4)									
	Route Card																				
Proje	Project Title DRAMA - Design to fail Too level description No. of components 1																				
Proje	t Code	32296-13	-		Design	to fail b	build 3. Mach	nine set up failure, Thin Ma	terial grade	IN718											
Proje	t risk level:	3			build	plate an	nd reduced do	osing should introduce													
Job R	equest I.D	20480			-	Build	defect Number: 11/	S. 1-MTC-AM250													
Card	et: ersion:	20480			-	Dunio	- Number: 11-	FINTE AW250													
curu	craion.	-				r	str.								WOR-004-F8	3 (v4)					
			Area	Author		4															
			(Name	or N/A)						Sub-	-Roi	ute Card		NA DI	C Duild File Deview C	h a alcliat					
Addit	ve Manufa nation & Re	cturing Ops	Josnua Evan	N/A	en					For work streams t	hat cai	n be carried out in	,	Disciscat ID	or build rile Review C	necklist	24751.00				
Asser	nbly Ops		N	N/A		Droio	et Title	DRAMA Design to fail		Top lovel descriptio				Project ID			34751-00				
Comp	onent Man	ufacturing Ops	N	N/A		Proje	ect Code	32296-13		Design to fail build 3	B. Mac	hine set up failu		AIVI BUIIU ID/INA		Complet	ZI-WIC-AW				
CNC 8	WEDM		N	N/A		Proje	ect risk level	3		build plate and redu	iced d	osing should int	Action List			(V/N)	Ref/Notor	Scuments or			
				-	-	Job R	Request I.D	20480		defects.		-	Corrier Somplos in	cluded or conces	sion chack		KelyNotes	,			
Ор	Area	Descri	ption	Equipment	Contro	Card	ref:	20480-1		Build Number: 114-	MTC-A	AM250	Carrier Samples In	ciuded of conces	sion check	Y					
													Correct geometry	version(s) selecte	ed for build	Y					
10	414 0 ===	Build Sile Deer		414250	DDC				.			Actua	Correct ID and na	ming convention	for geometry list		See Quant	AM/Magics			
10	All Ops	build the Fre	,	ANIZO	FRS	Up	Area	Description	Equipment	Control Document	RISK	Start Date	0 Coomoteu lintono			Y	file	44461-			
									Cut.				Geometry list aga	inst parameters		Y	See Quant	AIVITILE			
20	AM Ops	Powder Loadi	ng	AM250	PRS	10	Materials	Metallurgy Prep	Mount,	Machine Health	2		Geometry list aga	inscrocation on b	ed and order of scan	Y	See Quant	AM file			
									Polish	CHECK PKS			Geometry design	mate					1 dol	lumber	20314
30	AM Ops	Machine Set u	p	AM250	PRS				Zeiss	Machine Health			Geometry overna	IIIC	LPE	BF Build File	Preparation		WIL	ocation BM	S/Workshop/AM
						20	iviaterials	image J analysis	Microscope	Check PRS	1		support design a	Technology Centre					0	p No	10
40	AM Ops	Build Start		AM250	PRS			Save results, complete					ELC.) Support list and r	This reco	ord card is to be used in conju	nction with wo	ork instruction listed	d above, where details	of each ope	ration can be fo	und
					30 Materials paperwork and re		paperwork and return su	ub N/A	Machine Health	1		Powdor trans and		mili					Machine Setu	p Parameters	
								route card		CHECK PK3				CHILD I	DARET D					Machine:	AM500Q
						10		Quality Charle			1		All geometry and	·						fowder material:	Ti64
						40	Alvi Ops	Quality Check	IN/A	N/A	1		All geometry and	- E LE RE						build strategy:	MEANDER
							1			Return to manuf	acturi	ing route at 204	Stock added for s	44		8	Build height	89.5 mm appr		Substrate materie	al: Ti64
													from build plate	0	1000		ayer thickness	60 µm		thickness:	>30mm
1	D	o tuc	Car	rd									Correct ID and no	• 000	0.000	N	lumber of layers	1491.666667		Substrate heating	E: 170
д.		Jule	Cai	u									correct iD and na machina fila	# 0000	0001		Build time est	12.5 Hours		Recoater blade:	Silicone
_	_			_									Machine huild file			E	Build file name	21-MTC-AM500Q	1 1	Powder batch:	MTC0152
2	- Si	ıh-R	oute	е (а	ard								machine		0001		Part list and melt	U Drive>Metal>LPBE>A	1 I	Powder load:	80Kg
								1		theme location	M500Q>Build Log>2	F F	Dosing setting:	100%							
							Review all above	1				MITC-AM500G	r 1	Purging gas:	Argon						
ک .	3. Build the review checklist							and or customer	· @@@@	0000 x # 0000 •					Notes						
								Transfer of machi													
Λ	1 Build file Preparation								Delivery Enginee	Completed by:	Checked	by:		Comments							
+.	DU	uiu		LIG!	Jai	a							compelted corre	The above has bee	n completed in After over	ercheck by comp ecision has be	potent person, the en made to:				
~ .		• • •											Review engineer	accordance with th	e governing WI AC	CEPT	REJECT				
Sta	AV V	vith	nar	ts a	s t	he	v m	love thr	ough	proces	SS		compelted corre	Name	J.Evans Name		S.Smith	-			
	~ y ¥	U I CI I	P ^M	U U			· / · · ·		~~~	P1000				anger at une	pargnature			-			

1.Route Card

• Manufacture operation workflow

• Operation workflow control gates

mtc

WOR-004-F8 (v4)

	Route Card												
Project Title DRAMA - Design to fail T			Top level description					of con	ponents	1			
Project Code 32296-13				Design to fail build 3. Machine set up failure, Thin					erial g	rade	IN718		
Proje	ct risk level	3			build plate and red	luced	dosing shoul	d introduce					
Job R	equest I.D	20480]	defe	ects.						
Card	ref:	20480			Build Num	ber: 1	14-MTC-AM2	50					
Card	version:	1				-							
			Area A	uthor						Area	Author		
			(Name a	r N/A)						(Name	e or N/A)		
Addit	ive Manufac	turing Ops	Joshua Evans,	Chris Packer			Maintenance	2			N/A		
Auto	mation & Ro	botics Ops	N/	A			Materials La	DS			N/A		
Asser	nbly Ops	factoria Care	N/	A			Wetrology La	N/A					
Comp	Component Manufacturing Ops		N/	A			Customer			LIVI	Jones		
CNC			IN/	A									
					t Control Document Risk	Actual		Outcomo					
On	Area	Descri	Description Equipment			Risk	Completion		(tick one) Con		Completion	Notes / Progress Stamps /	
	, neu	Description		Equipment			Start Date	Date	C	н	Stamp	Overcheck Stamps	
10	AM Ops	Build File Prep		AM250	PRS	3							
20	AM Ops	Powder Loading		AM250	PRS	2							
30	AM Ops	Machine Set up		AM250	PRS	3							
40	AM Ops	Build Start		AM250	PRS	2							

• Material and part flow/planning through manufacture 2.Sub-Route Card

n	ntc										WOR-004-F8 (v4)			
	Sub-Route Card													
	For work streams that can be carried out in parallel													
Proje	ct Title	DRAMA - Design to fail		Top level description	n			No. c	of cor	nponents	4			
Proje	ect Code	32296-13		Design to fail build 3	. Mac	hine set up fa	ilure, Thin	Mate	erial g	grade	IN718			
Proje	ect risk level	3		build plate and redu	ced do	osing should i	ntroduce	List c	omp	onent IDs				
Job R	Request I.D	20480		defects.				HC1,	HC2,	HC3, HC4				
Card	ref:	20480-1		Build Number: 114-	MTC-A	M250								
						Act	tual	Out						
Ор	Area	Description	Equipment	Control Document	Risk	Start Date	Completion	(tick	one)	Completion Stamp	Notes / Progress Stamps / Overcheck Stamps			
10	Materials	Metallurgy Prep	Cut, Mount, Polish	Machine Health Check PRS	2		Date							
20	Materials	Image J analysis	Zeiss Microscope	Machine Health Check PRS	1									
30	Materials	Save results, complete paperwork and return sub route card	N/A	Machine Health Check PRS	1									
40	AM Ops	Quality Check	N/A	N/A	1									
	<u>.</u>			Return to manuf	acturi	ng route at 20	0480 110			1				

3.Build File Review Checklist

- Key operation step information and data capture
- Operation peer review and approval

M-PBF Build File Review Checklist										
Project ID		34751-06								
AM Build ID/NAME		21-MTC-AM500Q								
Action List	Complete (Y/N)	Links to Documents or Ref/Notes								
Carrier Samples included or concession check	Y									
Correct geometry version(s) selected for build	Y									
Correct ID and naming convention for geometry list	Y	See QuantAM/Magics file								
Geometry list against parameters	Y	See QuantAM file								
Geometry list against location on bed and order of scan	Y	See QuantAM file								
Geometry design and build-ability	Y									
Geometry overhang check	Y									
Support design and connection to geometry (teeth design etc.)	N/A									
Support list and parameters	N/A									
Powder traps and powder removal possible	N/A									
All geometry and support within build envelope	Y									
All geometry and supports connected to build plate	Y									
Stock added for support or sacraficial material removal from build plate	Y	See control plan (AM CRP Project Workshop Requirement Spec)								
Correct ID and naming convention for build model and machine file	Y									
Machine build file settings correct on build file and machine	Y									
Review all above against AM build requirements capture and or customer		Stress relief cycle defined by								
build specification	Y	standard SAT/FAT								
Transfer of machine build file to machine	Y	JE to complete								
Delivery Engineer Signiture that all above has been compelted correctly		J Evans - 05/11/2020								
Review engineer Signiture that all above has been compelted correctly		S Smith - 05/11/2020								

4.Build File Preparation Sheet

Shows all of the parts to be built, their location, orientation and labelling

+

M/C set up parameters

Manufacturi Technology	tc ng Centre		dol IW)	Number Location Op No	umber 2 ication BMS/W				
	This record	d card is to be use	d in conjunctio	on with work instruction listed	l above, where details o	f each op	peration can b	e found	
		n:111					Machine S	Setup P	arameters
កោ	าโโ						Machine:		AM500Q
	[สก				Powder material:		Ti64
		╤╧╸╵╰╏║					Build strateg	у:	MEANDER
				Build height	89.5 mm approx		Substrate ma	terial:	Ti64
	1			Layer thickness	60 µm		Substrate thickness:		>30mm
	0.00 1			Number of layers	1491.666667		Substrate heating:		170
	B OOO	CCC =		Build time est	12.5 Hours		Recoater bla	de:	Silicone
				Build file name	21-MTC-AM500Q		Powder batch: Powder load: Dosing setting:		MTC0152
				Part list and melt	U Drive>Metal>LPBF>A				80Kg
		1		theme location	M500Q>Build Log>21- MTC-AM500Q				100%
		0					Purging gas:		Argon
	• 888 = - 888	0000 • 000 × ×					<u>Notes</u>		
				-					
Completed	by:		Checked by:		Comments				
The above has been completed in accordance with the governing WI			After overche decisi ACCEPT	eck by compotent person, the on has been made to: REJECT					
Name	J.	.Evans	Name	S.Smith					
Signature			Signature		1				

Traceability for AM: In-Process Monitoring Available for AM

AM Process	Machine Manufacturer	'Module' name	Failure Mode Monitored	Parameter Altered	Equipment
Electron Beam Powder Bed Fusion	Arcam	LayerQam™	Porosity	N/A	Camera
Laser Powder Bed Fusion	B6 Sigma, Inc. (specialist)	PrintRite3D [®] INSPECT™	Unknown	N/A	Thermocouple and high speed camera
Laser Powder Bed Fusion	Concept Laser	QM melt pool	Melt pool monitoring	Laser Power	High-speed CMOS- camera
Laser Powder Bed Fusion	EOS	N/A	Unknown	N/A	Camera
Direct Energy Deposition	DEMCON	LCC 100	Melt pool monitoring	Laser Power	Camera
Direct Energy Deposition	DM3D Technology	DMD closed-loop feedback system	Melt pool monitoring and build height	Laser Power	Dual-colour pyrometer and three high-speed CCD cameras
Direct Energy Deposition	Laser Depth	LD-600	Depth measurement	Laser Power	Inline coherent imaging
Direct Energy Deposition	Promotec	PD 2000	Melt pool monitoring	N/A	CMOS-camera
Direct Energy Deposition	Promotec	PM 7000	Melt pool monitoring	N/A	1D photo detector
Direct Energy Deposition	Stratonics	ThermaViz system	Melt pool temperature	Laser Power	Two-wavelength imaging pyrometer

Source: KHUB-AM-0010-Correlation of IPM Data to XCT Inspection -v1.0

Traceability for AM: In-Process Monitoring Available for AM

Figure. IPM data representation in the Renishaw InfiniAM Spectral software generated by MTC.

Figure. IPM data representation for single layer against XCT image for the same sample and layer

Source: KHUB-AM-0010-Correlation of IPM Data to XCT Inspection -v1.0

5 min - Video

https://www.youtube.com/watch?v=tyJ4i8Jt70Y

Traceability

 Needs to be planned, managed and regularly checked (tested) and improved...do <u>not</u> take this lightly and <u>do</u> not wait until a customer calls..

Things which can and often do go wrong;

- Not capturing the right data
- Not capturing enough data
- Lost, corrupt, confusing or poorly labelled data
- False reliance on suppliers

Traceability is a PAIN but it is essential

As you will remember from the Sioux City crash when something goes wrong everyone is trying to "blame" someone else

Summary of Day 3 – Part 1

- We have discussed how QMS provides the framework and traceability foundation for CQS
- After the break we will we will look at some examples of how it affects the way the way a business operates..

Mentimeter – Practice question

Practice questions: Day3-Q1 **PQ1** – Traceability Q- What should traceability cover? Select one answer which applies Only covers in-house manufacturing operations. 1 Only covers supply of goods/services from outside of the business. 2 Covers internal and external activities. 3 (A- point 3 is correct)

Short break ...10 mins

DAY 3 PART 2

10.00 TRAINING ~45 MINS

> Co-funded by the Erasmus+ Programme of the European Union

Additive Manufacturing Process Specification (AMPS)

 AMPS defines the <u>entire end-to-end process</u> which must be followed to ensure that a part meets the required quality – and the process followed complies with prevailing CQS requirements.

AMPS gets into the <u>detail</u> of the process

AM Process Specification Some examples

- NASA 3717 for metallurgical control
- NASA 3716 for manufacture of spaceflight hardware
- ASTM F3303 Standard for Additive Manufacturing
- AMS 7003 Laser Powder Bed Process

You have been supplied with copies of NASA 3717 and 3716

- 1. Facility specification
- 2. EH&S specification
- 3. People and skills specification
- 4. Equipment
- 5. Design data
- 6. Material/feedstock specification
- 7. Specification of other consumables
- 8. Operation specification;
- 9. KPVs and Process Window Control
- 10. Inspection specification

Facility specification

Includes.....

- layout plan
- People, material workflow and segregation
- Climate control for temperature and humidity

EH&S (Environment health & safety)

Includes.....

- PPE (personal protective equipment)
- Barriers/partitions
- Closed rooms
- Local exhaust ventilation
- Risk assessments and safe working practice
- Material COSHH...

https://www.bsigroup.com

People and skills specification;

Includes....

- List of approved users
- Roles and responsibilities
- Skills and training matrix

This is a hot topic for many end-users

Equipment

Includes....

- Performance validation(Factory acceptance Tests FATS)
- Installation, commissioning (Site acceptance Tests SATS)
- Servicing, maintenance calibration for AM machine and other equipment used in the process

Design data

Includes..

- ID registers
- Version control
- Validation of fidelity

Material/feedstock specification

For example, for metal powder this includes;

- Definition of alloy,
- Particle form/shape, size range, size distribution
- Chemical weighting
- Interstitial contamination

Specification of other consumables

Including.....

- Compressed air type
- Inert gas type
- Filter grade
- Alcohol cleaning grade
- Build plate specification and drawings

Operation specification

Includes

 Work instructions, Guidelines, check sheets, route cards, manufacturing packs with control plans/process record sheets + process parameters

KPVs (Key Process Variables) & Process Window Control

Includes;

process variable measurement against necessary output criteria and fix setting/range by control plan

Inspection specification

• Part drawings and detailed inspection plans

Further information is provided in this report which has been sent to you Guidance notes for Additive Manufacturing certification.

April 2020

Example from the Aerospace Sector

Recommended Guidance for Certification of AM Components AIA Additive Manufacturing Working Group

You have been provided with a copy of this report

Recommended Guidance for Certification of AM Components AIA Additive Manufacturing Working Group

Process Control Documents

Infrastructure

- Facility Control Plan
- Operator Training and Qualification Plan
- Work Instruction Plan
- Software Configuration Control Plan
 <u>Machine Qualification Plans</u>
- Key Process Variable (KPV) Plan
- Machine Configuration Plan
- Preventative Maintenance Plan
- Machine Calibration Plan
- Machine Requalification Plan

Feedstock Control Plan

- Feedstock Lot Control Plan
- Feedstock Handling Plan
- Powder Feedstock Re-use Plan
- Machine and Material Alloy Change
- Contamination Avoidance Plan

Part Production Plans

- Engineering Requirements Plan
- Manufacturing Part Definition Plan
- Machine Parameters Plan
- Build Interruption Plan
- Quality Control Plan
- In-Process Monitoring Inspection Plan
- Record Keeping Plan

Post-Process Plans

- Powder Removal Plan
- Stress Relief Plan
- Hot Isostatic Press (HIP) Plan
- Heat Treatment Plan
- Build Plate Removal Plan
- Support Removal Plan
- Surface Enhancement Plan

Metron case study

you have been provided with a copy of this report

some of the information is contained in the following slides

Definitions of terminology used in within the context of production of components for the aerospace industry

Term	Quoted Definition	Definition Source	Reference
Certification	"A procedure by which a third party gives	MAASAG Paper 124	(Lunt, et al.,
	written assurance that a product, process or	Issue 1	2018)
	service conforms to a specified requirement."		
Qualification	"The demonstration that the product, process	MAASAG Paper 124	(Lunt, et al.,
	or service conforms to a specified requirement."	Issue 1	2018)
Validation	"Activities performed to demonstrate that a	SABRe Supplier	(Rolls-Royce,
	product is capable of meeting the requirements	Management System	2019)
	for the specified application or intended use."	Requirements	
	Note: Validation can also apply to a	Definition	
	manufacturing process.		
Verification	"Verification uses objective evidence to confirm	SABRe Supplier	(Rolls-Royce,
	that specified requirements have been met."	Management System	2019)
		Requirements	
		Definition	

- CAA/ EASA: the regulatory bodies which oversee the safety of the aerospace sector
- **Design Organisation:** "responsible for the design of products, parts and appliances or for changes or repairs" for example Airbus, Rolls-Royce.
- **Production Organisation:** "responsible for the manufacture of products, parts and appliances" ... must demonstrate appropriate capability.. have agreement in place with Design Organisation; demonstrate a robust Quality System; and have a nominated independent owner of quality management.
- Obtaining these approvals can take years....includes visits from National Aviation Authority (the CAA for the UK)

Subcontracting

 Design Organisation or Production Organisation can subcontract to another company but legal responsibility for the airworthiness of the products remains with them (ie you can not subcontract the responsibility)

Co-funded by the Erasmus+ Programme of the European Union

Working to standards

- AS9100D aerospace industry standard for quality management systems.
- Special processes (such as heat treatment) are audited by an organisation called NADCAP (National Aerospace and Defense Contractors Accreditation Program).
- Aerospace organisations still impose their own specific requirements.

- Even if baseline accreditations/ approvals are in place, supplier has to prove production readiness for each new product introduced...for example manufacturing readiness level (MRL) used by Rolls-Royce.
- Requirements for process approval may be different for each component, depending on e.g. their processing route or criticality.
- Design Organisation provides detailed material and process specifications....may even specify the feed-stock supplier.
- Qualification process has to be undertaken for each product supplied to each aircraft type.
- Design Organisation may permit learning to be 'read across' from one product to another or from one process to another.
- For AM we still don't have a good understanding of what we can read across.

Colin should have used on Day 1

Co-funded by the Erasmus+ Programme of the European Union

	Reviewed Documents											
	NADCAP Audit	MASAAG Paper 124	AIA - Recom	mended	FAA	NASA MSFC-STD-	ASTM F2924	ASTM F3049	ASTM F3301	ASTM F3303	AMS 2801B	AM57003
	Criteria For Laser	Guidance Note On	Guidanc	e for	Job Aid for	3717	Standard	Standard Guide for	Standard for	Standard for	Heat Treatment of	Laser Powder Bed
	and Electron Beam	the Qualification	Certificatio	n of AM	Evaluating Additive	Specification For	Specification for	Characterizing	Additive	Additive	Titanium Alloy Parts	Fusion Process
	Metallic Powder Bed	and Certification of	compor	vents	Manufacturing	Control and Dualification of	Additive	Properties of Metal	Manufacturing -	Manufacturing -		
	Manufacturing	Manufactured Parts			Processes	Laser Powder Bed	Titanium-6	Additive	Methods – Standard	Characteristics and		
	in an a change	for Military Aviation			1100000000	Fusion Metallurgical	Aluminium-4	Manufacturing	Specification for	Performance:		
						Processes	Vanadium with	Processes	Thermal Post-	Practice for Metal		
							Powder Bed Fusion		Processing Metal	Powder Bed Fusion		
									Parts Made Via	Process to Meet		
-									Powder Bed Fusion	Critical Applications		
Powder	x		×			х	х			x		
specification												
Powder	х				х							
Receipt												
Powder	х	х			х	х						
handling												
Powder	х	х			х	х				х		х
Storage												
Powder		x				x	x					x
blanding						~	~					~
Powder		x				x	x			x		
recycling		<u>^</u>				~	~			^		
Develop			L				×	×				
Powder							^	^				
testing												
key process		×	×									x
variables												
Machine	х	х	×							х		
operation												
Build		х			х				11 1			
Monitoring				(hecklig	at is in	COURS	e han	nnovk			
Build	Х	х										х
pauses												
Machine	х	х			х	х				х		х
maintenance												
Support	x		×									
romoval	~		^									
Thermal nost	v	v	v			v	v		v		v	
nermarpost	Â	<u>^</u>	l ^			â	â		î î		^	
Furface		v										
sunace		^										
Finishing												
Machining												
Inspection	x	x	×		x							

Table 2: Reviewed documents referencing to specific EB-PBF process tasks

Feed-stock control

4.1 Powder

4.1.1 Specification

The sources reviewed containing information on the specification of powder being procured and for continual testing is displayed in Table 2. Based on the information reviewed the MTC suggests that Metron's processes must include the following:

- Powder suppliers are to hold AS9100 or an equivalent accreditation
- A clear powder specification is used when procuring powder feedstock including acceptable limits, methods of sampling, methods of testing and acceptable testing tolerances on the following metrics:
 - Chemistry
 - Particle size distribution (PSD)
 - Powder morphology (at least qualitative requirements)
 - Flowability
 - Contamination requirements
- In addition to this the powder specification should:
 - Explicitly state the powder manufacturing method (incl. atomising gas)
 - Place controls on the blending of powder heats into powder lots (i.e. requiring each blended heat to meet the feedstock specification)
 - State the requirements for feedstock packaging (incl. environmental controls) that by design explicitly prevent moisture from entering.

Note: Multiple standards (ASTM F3303) explicitly prohibit the placing of desiccants or other materials in contact with the feedstock materials.

- A certificate of conformance (CoC) to the supplied specification
 - Identifiers of powder heat and blended lot with date and location of production allowing traceability back to the specific heat.
- Powder should be verified against this specification prior to use

4.1.7 Testing

The sources reviewed provided little guidance on the procedures and methods for powder testing, however, ASTM F3049-14 can provide some guidance on this. Together with this standard the MTC recommends following the test standards for verifying the powder feedstock metrics displayed in the table below.

Table 3: Test standards governing the relevant metallic powder test methods employed for the suggested material purchasing specification

Property	Test	Governing standard
Powder sampling	Sampling method	ASTM B215
Particle size	Sieve analysis	ASTM B214
determination*	Light scattering method	ASTM B822
Morphology	Morphology definitions only**	ASTM B243
	Inert gas fusion	ASTM E1447
Chemical	Combustion Analysis	ASTM E1941
composition	Inductively Coupled Plasma Atomic	ASTM E2371
	Emission Spectrometry	
	Wavelength Dispersive X-ray	ASTM E539
	fluorescence	
Flowability	Hall flow	ASTM B213 & B855
	Carney flow	ASTM B964
Contamination	N/a	No current governing
		standard or commonly
		accepted test method
Density	Hall flow	ASTM B212
	Carney flow	ASTM B417
	Scott volumeter	ASTM B329
	Arnold meter	ASTM B703
	Tap Density	ASTM B527
	Skeletal density	ASTM B923

* Non standardised light scattering methods may be applicable

** Only defines definitions of powder shapes – no standard for qualification of powder morphology currently exists

Machine operation

4.2.2 Machine operation

The sources reviewed containing information on procedures for machine set up is displayed in Table 2. Based on the information reviewed the MTC suggests the following advice.

Note: It is strongly suggested by multiple standards and the MTC that a machine is allocated to a single material as the changing over of materials in the context of validation or qualification for aerospace is too high risk and runs a large amount of machine requalification effort.

All operators shall be suitably trained or qualified to operate the equipment and a documented record of operator for each stage of the manufacturing process should be kept. The operator may be considered a KPV and if so should be controlled accordingly.

The equipment/machinery to be used during manufacture (including pre and post processing) should be defined and documented at a minimum to the following level:

- Machine, make and model
- Serial number
- Date of machine configuration
- Software and hardware version numbers
- Recoater configuration, material and condition
- Recoater speed
- Build platform material and configuration
- Preheating temperature
- Powder dosing range
- Gas composition/grade
- Vacuum quality
- Oxygen limits
- Temperature limits
- Dew point and moisture control

Documented procedures should be in place to ensure that the quality of the all build plates are controlled, this includes:

- Build plate cleanliness and condition
- Build plate is free from contamination and defects
- Traceability between manufactured component and build plate
- Tolerances and material requirements of the build plate including: flatness, finish, thickness, and alloy
- Visual inspection of build plates is carried out and that non-conforming build plates are disregarded

Similar process control could be consider for other key consumables such as recoaters and process gases.

Some customers can be very demanding

recently we were asked to complete an **800 line** checklist for <u>every</u> part made

Question ?

Is it worth the trouble of providing all of this information

Often said that the paperwork covering the design, certification and manufacture of an aircraft weights more than the aircraft itself !

Although we have covered an example from the aerospace sector the list of manufacturing aspects which must be controlled are consistent across all sectors

Summary Day 3 – Part 2

We have covered an overview of the issues which must be considered and controlled

We have looked at how the aerospace sectors specifies the critical issues which must be managed

After the break we will look at product verification and inspection

Short break ...5 mins

DAY 3 PART 3

10.50 TRAINING 20 MINS

> Co-funded by the Erasmus+ Programme of the European Union

Question ?

What happens if you design a part which can't be inspected properly ?

"If you can't inspect it then you can't fly it" (Airbus)

Product Verification & Inspection

Need to plan the inspection process from the outset

- Design for inspection
- Assess limits of detection of the inspection processes
- Devise, test and implement Inspection procedure

Product verification

Ensures product meets required design specifications and therefore performs as intended

Case study – KHUB-AM-0005 planning for product verification of Heat exchanger produced by Metal PBF-LB (you have been supplied with this report)

Planning for Product Verification

- Starts at design concept and process planning stages
- Significant impact on product quality and cost
- Final part inspection at end of manufacturing process is most common method of verifying product quality

BUT

- For complex parts requiring multiple manufacturing operations may be better to verify as manufacturing progresses to;
 - Avoid incurring higher cost /delays later
 - \odot Take timely corrective action
 - \odot Identify the cause of the problem
 - Enable easier access to features (for example in a welded part)

Strategy for Product Verification

Documents relating to product verification against key product lifecycle steps

Inspection programs

Co-funded by the

Erasmus+ Programme of the European Union

Inspection reports & data

Verification matrices

Functionality statements

Recommended that document with the following minimum information is created:

- **1. Functional requirements**: high level qualitative statements of the intended part function;
- **2. Interpretation**: high level quantitative expressions of how the functional requirements will be translated into specifications;
- **3. Characteristic type:** whether the functional requirement relates to form, fit or function;
- 4. Criticality: an assessment of relative criticality or importance

Question ?

What is/are the function requirements of a heat exchanger ?

Some of the functional requirements for heat exchanger...

Functional requirement	Interpretation	Characteristic type	Criticality
The component must not interfere with surrounding parts at maximum material condition.	Bounding envelope / maximum material condition.	Form	
The interfaces must achieve a strong connection and a good seal.	Use threaded flange interface. Make mating surfaces datum features.	Fit	Critical
The component must achieve the minimum heat transfer characteristics within its operating volume and conditions.	Minimum heat transfer coefficient. Minimum surface area.	Function	Critical
The component must achieve the desired hydraulic performance at operating conditions through its life.	Pressure drop vs flow characteristic curve at operating envelope.	Function	Critical

Verification matrix

Methods for assessing each requirements is met;

- Dimensional inspection or non-destructive testing (NDT).
- Condition of supply checks ensuring a valid and traceable CoC (certificate of conformity) has been provided by the supplier.
- Manufacturing process controls ensuring the process is stable and fixed.
- Functional testing

Verification matrix for heat exchanger

different colours represent the different methods, and the icons represent whether a requirement is fully or partially met.

Legend:	
Manual gauging / visual	C
3D Structured Light	F
X-Ray CT	٦

This project has been fui

Functional requirements	Possible verification routes						
Functional requirements	Dimensional	NDT	Condition of supply	Functional test In-service hist			
The component must not interfere with surrounding parts at maximum material condition.	Measure linear dimensions or profile of external surface.	٥	٥	Prove process is capable.	Go/nogo fixture. Assembly () success/failure.	Q	
The interfaces must achieve a strong connection and a good seal.	Thread go/nogo gauge. Measure mating surfaces.	Visually check thread damage. Presence of correct sealant.	Verify screws / inserts are in 0 spec.	Torque settings locked. Calibrated wrenches.	Leak test. Fatigue / vibration () test.	Q	
The component must achieve the minimum heat transfer characteristics within its operating volume and conditions.	Measure profile of o a surface.	Measure surface area. Measure Sa of internal & external surfaces.	Verify powder is on spec.	Process proved stable.	Power test. ⊘	Use proven part family design ① elements.	
The component must achieve the desired hydraulic performace at operating conditions through its life.	٥	٥	٥	Process proved stable. ① KPVs controlled.	Pressure test. ⊘	Use proven part family design ① elements.	
Component integrity must be maintained through its life at nominal conditions and at worst operating conditions for a short period.	Verify wall 🕜 thickness.	Sa of internal & external surfaces. Defect / porosity allowances.	Verify powder is in spec. O Material spec.	Lock down build or programs.	Accelerated fatigue test. Max temperature test. Max pressure test.	Use historical data from part ① family if available.	
The component's internal surfaces must have antifouling properties to avoid performance degradation.	٥	Sa or feature based characteristics of internal surfaces.	٥	Prove at FAIR and Olock down.	Chemical lab tests for product 🧔 family	Use historical data from part () family if available.	
The component's external surfaces must be self- cleaning to avoid performance degradation.	٥	Sa or feature based characteristics of external surfaces.	٥	Prove at FAIR and Okon.	Chemical lab tests for product 🧔 family	Use historical data from part family if available.	
The component should be designed in such a way as to not trap powder as this can damage the hydraulic system	Measure profile of surface (external Official features).	Scan part for presence of powder.	0	CAD interrogation tools. Machine cleaning () / maintenance schedule	Part contamination () test.	G	

- Choosing the appropriate combination of verification routes from the matrix, should be based on minimising risk, or maximising the component's functionality, within the given cost and practicality constraints.
- For the heat exchanger example, we can see that, as a minimum, functional testing, X-ray computed tomography, and 3D structured light methods should be used to verify the component. It is notable that verification in this case will be heavily reliant on functional testing.

Part definition and inspection planning

- Part definition refers to the creation of drawings and GD&T (geometric dimension & tolerancing), following from the definition of the general geometry.
- For a single AM component the following drawings <u>could</u> be created:

○As-built part

Following the removal of supports
Post-heat treated condition
After finishing

Inspection planning

creating the overall strategy for the inspection of every feature or requirement in the drawing (such as drawing notes or referenced specifications)

The inspection plan should include the following information:

- Part number;
- Drawing name and version;
- Feature description and feature grid reference or number;
- Inspection system to be used;
- Measurement strategy to be used;
- Feature construction strategy or algorithm to be used;
- Feature reporting strategy.

This project has been funded with support from the European Commission. This communication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Sources of information

Source	Information				
Source Standards reviewed related to these topics	 AWSD20.1/D20-Specification for fabrications of metal components using Additive Manufacturing SAE AS7032 - Additive Manufacturing Machine Qualification – (Draft copy) SAE AS7007 – Electron Beam Melting material specification- Aerospace Specification NASA MSFC-SPEC-3717 - Specification for control and qualification of laser powder bed fusion metallurgical processes NASA MSFC-SPEC-3716 - Standard for additively manufactured spaceflight hardware by laser powder bed fusion in metals ISO/ASTM 52942 - Additive manufacturing Qualification principles — Qualifying machine operators of metal powder bed fusion machines and equipment used in aerospace applications (currently being prepared) ISO/ASTM 52904 or ASTM F3303 - New Guide for Additive manufacturing Guideline for Installation, Operation and Performance Qualification (IQ/OQ/PQ) of Laser-Beam Powder Bed Fusion Equipment for Production Manufacturing (currently going through approval) ESA - ECSS-Q-ST-70-80C Draft 1 Processing and quality assurance requirements for metallic powder bed fusion technologies for space applications DIN SPEC 17071 Additive manufacturing - Requirements for quality- assured processes at additive manufacturing centres AIA (Additive Manufacturing Working Group) Recommended Guidance for Certification of AM Component 				
Guidelines	 Lloyds Register, - Guidance notes for the Additive Manufacturing certification MASAAG Guidance note on the Qualification and Certification of Additive Manufactured Parts for Military Aviation European Federation for Welding, Joining and Cutting Guideline for European/International Operator Powder Bed Fusion – Laser Beam 				

Mentimeter - Practice question

Practice questions: Day3-Q2

PQ2 – Product Verification Matrix

In the context of product verification what is CoC an abbreviation for (select only ONE answer)?

- 1 Clash of clans
- 2. Code of conduct
- 3 Certification of conformance
- 4 Combat operations centre
- A. 3-Certificate of conformance

- End of course questionnaire <u>–see link in chat</u>
- Important guidance for answering the survey

Section 1

• Q4 - Where is the training course taking place? > answer where you are based

Section 2

- Q8 which pilot course did you attend CU 63 CQS for AM
- **Q10** what is the regime of the pilot course **E'learning**

As we <u>don't</u> have any practical training or assessment for the course.....

Q11 (e) Equipment for practical training = not applicable N/A

Q12 (e) and (f) = not applicable N/A

Once you have complete the survey you can have a short break We will be starting the assessment at <u>11:30am</u>

Thank you

This project has been funded with support from the European Commission. This communication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Co-funded by the Erasmus+ Programme of the European Union

IRISH MANUFACTURING RESEARCH

WELCOME

Title: Certification, Qualification and Standardisation in Additive Manufacturing

Time: 10.00 to 12.00 Dates: 30th June 2021, 7th July 2021, 14th July 2021 (09.00 – 12.00) Location: Online

Co-funded by the Erasmus+ Programme of the European Union

NATIONAL

MANUFACTURING

CENTRE

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Technology Centre

Classroom Etiquette

- Mobile phones on silence please.
- Mute yourself until asked to join discussions.
- Put you hand up if you have a question.
- Write questions into the chat.
- Personal emails & distractions on hold until after training.

THANK YOU LET'S ENJOY THIS TRAINING TOGETHER!

Co-funded by the Erasmus+ Programme of the European Union

Trainers

Katrina Farrell Learning and Development Specialist Irish Manufacturing Research

DAY 1 to DAY 3 SAM – Learning Support

Fergal Finn Manager Standards Innovation, Policy & Business Development National Standards Authority of Ireland

DAY 2 SAM - Technical Support

Tristan McCallum Advanced Manufacturing Applications Engineer Irish Manufacturing Research

DAY 2 SAM – Technical Support

Co-funded by the Erasmus+ Programme of the European Union

DAY 1		DAY 2		DAY 3	
10.00 - 12.00	TRAINING	10.00 - 12.00	TRAINING	10.00-12.00	TRAINING
10.45 – 10.55	BREAK 10 MINS	10.45 – 10.55	BREAK 10 MINS	10.45 – 10.55	BREAK 10 MIN
10.55 – 11.45	TRAINING	10.55 – 11.45	TRAINING	10.55 – 11.45	TRAINING
11.45 – 12.00	QUIZZ /Q&A	10.45 – 12.00	QUIZZ/Q&A	10.45 – 12.00	QUIZZ/Q&A
					₩ -

DAY 2 PART 1

10.00 LEARNING OUTCOMES

Co-funded by the Erasmus+ Programme of the European Union

Co-funded by the Erasmus+ Programme of the European Union

Project No. 601217-EPP-1-2018-1-BE-EPPKA2-SSA-B

Learning Outcomes Day 2

- LO3 Describe Standardisation in Additive Manufacturing.
- LO4 Differentiate and classify the linkages between CQ&S.
- LO5 Outline CQ&S activities and identify the main differences associated with each one.
- LO6 Recognise the standards which are applicable to AM.
- LO7 Research, select and find the relevant AM standards in the public repository.

DAY 2 FERGAL FINN NSAI

STANDARDS IN AM

Co-funded by the Erasmus+ Programme of the European Union

CU 63 Syllbus: Topic Summary

Standardisation in AM

Introduction to standards and standardisation.

Additive Manufacturing in standardisation (standardisation bodies).

Areas covered by Technical Committees.

Development of standards.

AM standards and standardisation activities navigation.

Relationship between standardisation with qualification and certification.

Relationship between AM Standards and the AM enabled process chain.

Day 2

LEARNING OUTCOMES

SAM PROJECT

STANDARDS IN AM

CASE STUDY IN APPLICATION

Today's breakdown of topics

- What are Standards
- Standards in AM
- Types of Standards
- Benefits of Standards
- Standards Organisations
- Type of Deliverables
- Development Stages
- Member Benefits

- Standards Organizations for Am
- Structure

- National AM Standards
- Irish Mirror Committee
- Our Role
- Get Involved

Who is Fergal Finn?

Bachel Mecha Engine UL	or of nical ering,	Offsho Service Techni Camer Aberde	e cian, ron, een	Senior Science Officer Dublin	e , NSAI,	Stand Mana NSAI,	ards ger, Dublin	
	1999	-2002	2006-	-2008	2012 [.]	-2015		NSAI
1995-								
1999	-1999	2002 [.]	-2006	2008-	-2019	201 pre	L9 to esent	

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

12

12

Who is NSAI?

Government Agency – promoting the development, use and compliance with National, European and International Standards and European Directives

NSAI Act 1996

Acts on behalf of the Minister for Enterprise, Trade & Employment

National Standards Authority of Ireland

An Roinn Fiontar, Trádála agus Fostaíochta Department of Enterprise, Trade and Employment

Who is NSAI?

The hierarchy

The hierarchy – Regulation (Road vehicles)

The hierarchy - Standards

MASSEY FERGUSON

I.S EN ISO 4254-1:2015 Agricultural machinery - Safety - Part 1: General requirements (ISO 4254-1:2013)

I.S EN 15694:2009+A1:2015Agricultural and forestry tractors - Passenger seatRequirements and test procedures

I.S. EN ISO 16231-2:2015
Self-propelled agricultural machinery -Assessment of stability - Part 2:
Determination of static stability and test procedures (ISO 16231-2:2015)

ISO 22172-2:2021

Agricultural vehicles — Standardized access to repair and maintenance information (RMI) — Part 2: Vehicle on-board diagnostics

I.S. EN 15695-1:2009

and test procedures

Agricultural tractors and self-propelled sprayers -

Protection of the operator (driver) against hazardous

substances - Part 1: Cab classification, requirements

European Harmonised Standards

European Conformity (Medical Devices Regulation)

- EU New Legislative Framework (Regulations)
- New Approach Directive
- HPRA (MDR IVDR)
- Designating Authority
- Market Surveillance Authority **Authority**
 - NSAI (Medical Devices) CE
 - Certification

Notified

Body

EU Regulation 2017/745

European Conformity – RAPEX Safety Gate: the EU rapid alert system for dangerous non-food products

Alert number: A11/00044/21

Published on 10/06/2021 in web report Report-2021-24

Risk type	Burns
Notifying country	Hungary
Alert number	A11/00044/21

Back to report

Print

The product is attractive to children. A child may touch the accessible hot heating surface of the product and suffer burns. The product does not comply with the requirements of the Low Voltage Directive and the relevant European standard EN 60335.

Category	Electrical appliances and equipment				
Product	Popcorn maker				
Hide details of the produc	x ^				
Description					
Red plastic covered popcorn machine in the shape of a retro popcorn maker trolley with a see-through window. The product was also sold online.					
Packaging description					
Colourful cardboard box.					
Brand					
mikamax					

Name

POPCORN MACHINE

The commerce of manufacturing

Raw material

ASTM A291 – Steel Forgings, Carbon and Alloy, for Pinions, Gears and Shafts for Reduction Gears

Manufacture

ISO 9606-1:2012 Qualification testing of welders Inspection

ISO 3452-1:2013 Non-destructive testing -Penetrant testing ISO 9934-1:2016 Magnetic particle testing ISO 16809:2017 Non-destructive testing -Ultrasonic thickness measurement

Product

What are Standards?

'Standard' means a technical specification, adopted by a recognized standardization body, for repeated or continuous application, with which compliance is not compulsory.

European regulation on standardization (1025/2012)

What are Standards?

A standard is:

- voluntary in application
- established by all interested parties
- consensus based
- approved by a recognized body
- meant for a common and repeated use

Development Principles of Standards?

Market need Global expert opinion Transparency Impartiality & consensus Open to all stakeholders

Benefits of Standards

Assist trade by eliminating technical barriers

Promote interoperability of products & services

Promote new technologies & good practices – spread knowledge

Increase safety of products & protect health, environment etc and protecting the consumer

Assist with compliance with legal obligations

Everyday standardisation

1973: First Mobile Phone

I.S. EN IEC 62684:2018 (edition 2) Interoperability specifications of common external power supply (EPS) for use with data-enabled mobile telephones now exists (excluding Apple)

International Standards Organizations

International Organization for Standardization Technical, Services, Energy, Healthcare, Food...

International Electrotechnical Commission Electricity and Electrotechnical

International Telecommunications Union Electronic Communications

European Standards Organizations

European Committee for Standardization Technical, Services, Energy, Healthcare, Food...

European Committee for Electrotechnical Standardization

Electricity and Electrotechnical

European Telecommunications Standards Institute Electronic Communications

The Standards highway

Process relationships between the Standards Organizations

Our role – Connect & Facilitate

Types of Standards

4 major types

Management System Standards

describe the functions and structure/relationships within an organisation.

ISO 9001- Quality Management Systems - Requirements

Product Specification Standards

define characteristics of a product or service with performance thresholds

ISO 17296-2:2016 – Additive manufacturing - General principles - Part 2: Overview of process categories and feedstock

Fundamental Standards

Terminology, signs, symbols etc.

ISO 52900:2015 – Additive manufacturing – General principles – Terminology

Test Methods

detail test and analysis methods for products

ISO 9934:2015 – Non-destructive testing – Magnetic particle testing

Management system standards

- ISO 9001 Quality Management System
- ISO 27001 Information Security Management
- ISO 14000 Environmental Management
- ISO 50001 Energy Management
- ISO 45001 Occupational health and safety
- ISO 56000 Innovation management
- ISO 42000 Artificial Intelligence Management System (coming soon)

Co-funded by the Erasmus+ Programme of the European Union

Types of deliverables – ISO/CEN

Type of Deliverable	ISO/IEC
Standard – EN/ISO/IEC	ISO/IEC – Approved by members, consensus on rules, characteristics or results for optimum order in a given context – <u>consensus achieved</u>
Technical Specification - TS	ISO TS – Topic under technical development – possibility of a future International standard – <u>not full consensus</u>
Technical Report - TR	ISO TR - Data or information on perceived "state of the art" e.g. informative report or survey results. Informative

Development stages

Comparing development processes for an IS

	6 stages	Action	Balloting time	Default path	Shortest path	
1	Proposal NP	Proposal to start a new project	 3-month ballot by default 2-month ballot possible TC/SC resolution for revision & amendments 	NP	NP Straight to DIS	Stage 10 Proposal
2	Preparatory WD *	Expert consensus within working group		WD		Stage 20 Preparatory
3	Committee CD *	Committee consensus	 2-month ballot by default 3 or 4 month vote possible Can be skipped 	CD		Stage 30 Committee
4	Enquiry DIS	National consensus	 2-month translation 3-month ballot	24 months to reach DIS	12 months to reach DIS	Stage 40 Enquiry
5	Approval FDIS *	YES or NO vote	 Skipped by default Can be introduced 2-month ballot 	FDIS		Stage 50 Approval
6	Publication	ISO International Standard		Up to 36 months	Down to 9 months	Stage 60 Publication
	* OPTIONAL		Sec. Adn	nin. (CIB)	ISOCS Admin.	

Committee Member benefits

Standards can be part of your Research journey introducing new innovations

You can be part of the Standard as it develops and influence technical aspects

You can be part of a network of like minded experts is a specific technical area

Standards in Additive Manufacturing

Standards Organisations

Guiding principles in AM Standardization

One set of AM standards –to be used globally "One world –One Standard"

Work on a common roadmap and organizational structure for AM standard

Use and elaborate upon existing standards, modified for AM purposes when necessary to increase efficiency and effectiveness

ISO/TC 261, ASTM F42 and CEN/TC 438 work together and in the same direction with an emphasis on joint standards development

ISO/TC 261 – Additive Manufacturing

ISO Technical Committee 261 Created 2011

Secretariat – DIN (Germany) 26 P-members (including IRELAND)

9 O-members

19 Published Standards35 Standards under development

Standards in Additive Manufacturing

Data & Design

ISO/ASTM 52950:2021

General principles — Overview of data processing

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Testing, QA

Materials

ISO 17296-2:2015

General principles — Part 2: Overview of process categories and feedstock

ISO/ASTM 52903-1:2020

Material extrusion-based additive manufacturing of plastic materials — Part 1: Feedstock materials

ISO/ASTM 52907:2019

Feedstock materials — Methods to characterize metal powders

Process

<u>ISO 27547-1:2010</u>

Plastics — Preparation of test specimens of thermoplastic materials using mouldless technologies — Part 1: General principles, and laser sintering of test specimens

Personnel

Personnel

Process

ISO/ASTM 52903-2:2020

Material extrusion-based additive manufacturing of plastic materials — Part 2: Process equipment

Process 3D

Testing, QA

ISO/ASTM 52904:2019

Process characteristics and performance — Practice for metal powder bed fusion process to meet critical applications

ISO/ASTM 52941:2020

System performance and reliability — Acceptance tests for laser metal powderbed fusion machines for metallic materials for **aerospace** application

Test & Inspection

In development

Intentionally seeding flaws in additively manufactured (AM) parts

Anisotropy effects in mechanical properties of AM part

Standard test artifacts

Extrusion of Plastic Materials

Round robin studies for additive manufacturing

NDT for AM parts

Test methods for characterization of powder flow properties for AM applications

Digital product definition and data management

Personnel Training

Requirements for purchased AM parts

Test methods for characterization of powder flow properties

Irish Standards

I.S. EN ISO v BS EN ISO BS EN ISO/ASTM 52941:2020 I.S. EN ISO/ASTM 52941:2020 INTERNATIONAL ISO/ASTM 52941 STANDARD First edition 2020-11 Irish Standard I.S. EN ISO/ASTM 52941:2020 🕅 NSAI Standards **BSI Standards Publication** Additive manufacturing - System performance and reliability - Acceptance Additive manufacturing - System tests for laser metal powder-bed fusion performance and reliability -Acceptance tests for laser metal machines for metallic materials for powder-bed fusion machines for aerospace application (ISO/ASTM metallic materials for aerospace Additive manufacturing - System performance 52941:2020) application and reliability - Acceptance tests for laser Fabrication additive — Performance et fiabilité du système — Essais de réception pour machines de fusion laser sur lit de poudre pour les matériaux métalliques pour l'application aérospatiale metal powder-bed fusion machines for metallic materials for aerospace application Price £36 + VAT Price £134 bsi. Reference number ISO/ASTM 52941:2020(E) ISO €₽, © ISO/ASTM International 2020

Standards adoption and numbering

Get involved – NSAI.ie

← → ♡ ŵ 🗄 https://www.nsai.ie/standards/standards-commitees/		
NSAI	BUY STANDARDS ONLINE CONTACT Standards ~ Certification ~ Legal Metrology ~ National Metrology ~ Brexit ~ About NSAI ~ Q	
Company of the second	What Are Standards? Comment on Draft Standards at Your Standards at Your	
Went to Ca	Search/Buy Standards	
Want to Ge	Supporting Standards	
Involved w	Notification and Registration Schemes	
Standarde	Want to Get Involved with Standards?	
Standartis	NSALLvelink	
Standards are agreed or toria des	igned to ensure that New Committee Member FAQs Under	ALCONTRACK
Standards create a climite of trus	st in the marketolitie Register Your Interest Here	
for goods and service	Terms and Conditions for NSAI Committee QS Members	
$\widehat{\omega}$ > standards > want to get involved with stan	NDARDS?	
	Overview 1	
NS/	AI formulates standards through consultation with various interested consumer,	
	environmental, industry and government parties.	

Input to draft Standards

Your Standards, Your Say Review, Read & Comment on drafts www.nsainep.ie

🖗 NSAI Your	Standards Yo	our Say		
Home Register Conta	ct Us Help		Log in	
	Your Standa	ards, Your Say		
1 Q	2 💽	3		
Search	Read	Comment	Share	
Use the search bar below or browse by category to find standards relevant to your business or industry	Read and review the current standard and think about how it would affect you and your business	Comment on the draft standard and help shape its future	We make it easy for you to share standards and comments with colleagues	
Search by Keyword	Search	م		

Standards?

Standards are part of your industry

You can see the Standards as they develop

You can be part of the Standard as it develops

NSAI is here to help you just call Fergal (01) 807 3852

Thank You.

WWW.NSAI.IE

Fergal.Finn@nsai.ie

Search "NSAI"

DAY 1 PART 2

11.00 – 11.45 Certification and Qualification in AM

Co-funded by the Erasmus+ Programme of the European Union

Typical Characteristics of Certification and Qualification?

Criteria	Qualification	Certification
Scope	Process: Evaluating a prototype design/materials/test phase.	Process: Evaluating material/product/compo nent during or at end of development process.
Objective	Prototype meets specified requirements.	Product meets the requirements.
Questions to address	Are we designing/building to requirement?	Right product?
Evaluation Items	Document	Actual product/software

Criteria	Qualification	Certification
Activities	Reviews Audit/site visits Witness testing Compliance statement Facility approvals Technology assessment Manufacturing procedure qualification	Inspections Testing Product certification Material certification
Approval Regime	Approval of manufacturer Type approval Approval of supplier	Approval of manufacturer Type approval Approval of supplier

Material Certification

- IMR specified powder
 - Type
 - Morphology
 - Particle size
- AP&C supplied & certified powder
 - Tested to specification using standards

Customer:	Irish Manufactu Dublin Road, M Ireland.	Manufacturing Research. National Sci lin Road, Mullingar, Co. Westmeath Ne nd.		cience Park, N91 TX80,	Internal Order:	GEA2841 Rev.1	
Purchase Order:	656				Laboratory No:	STE-18-1262; STE-18-12 STE-18-1268 Rev.2; STE-	
Material Description:	Ti-6AI-4V Grade	e 23 powde	r				1291
Size:	10-45 µm				Lot #:	18-E5287	
Specifications:	ASTM F3001.				Quantity:	100 kg	
		POWD	ER COMPOS	ITION (weight	percent)		
Element		Testing n	nethod	AS	TM F3001	Measured	Status
Lienen	resung metrod		Min	Min Max		otatus	
Aluminum (Al)		ASTM E	2371	5.50	6.50	6.34	Conformin
Vanadium (V)		ASTM E	2371	3.50	4.50	3.81	Conformin
Iron (Fe)		ASTM E	2371		0.25	0.19	Conformin
Oxygen (O)		ASTM E	1409		0.13	0.13	Conformin
Carbon (C)		ASTM E	1941		0.08	0.03	Conformin
Nitrogen (N)		ASTM E	1409		0.05	< 0.01	Conformin
Hydrogen (H)		ASTM E	1447		0.012	0.002	Conformin
Yttrium (Y)		ASTM E	2371		0.005	< 0.001	Conformin
Other elements, e	ach	ASTM E	2371		0.10	< 0.10	Conformin
Other elements, to	otal	ASTM E	2371		0.40	< 0.40 Conform	
Titanium (Ti)		ASTM E	2371	Bal	Bal	Bal	Conformin
Chemical an	alysis laboratory	: Luvak Inc	. (722 Main S	reet, P.O. Box	597, Boylston MA,	01505). Report: (-85825
		P	OWDER CHA	RACTERIZAT	ION		
Description Rec	quired Mea	sured	Status	Descriptio	n Required	Measured	Status
Flo	w rate per ASTM	B213			Particle size distri	bution per ASTN	I B214
Flow rate Repor	t	30	NA	*Standar	rd ASTM B214 appli	es to powder size	es 45 microns
(sec/oulg)	nt density per A	CTM D242			Or Macc	& Dy Macc	aon only.
App density	in density per A			512e (µm)	70 by Mass	4 8	NA
(g/cm ³) Repor	t 2	2.48	NA	≤45	Report	95.4	NA
Particle size	distribution per	ASTM B8	22				
	Coulter® LS133	20)					
D10 (µm) Repor	t	20	NA				
D50 (µm) Repor	t	34	NA				
D90 (µm) Repor	1	46	NA				
<15 µm (% syvel) Repor		3	NA				

AP&C submits this certification as the confidential property of the client. It shall not be reproduced except in full, without the written approval of Quality department of AP&C. The recording of false, fictilious, or fraudulent statements or entries on the certificate may be punished as a felony under federal law.

Material Description: Ti-6AI-4V Grade 23 powder					1291	
Size:	10-45 µm		L	.ot #:	18-E5287	
Specifications:	ASTM F3001.		C	Quantity:	100 kg	
		POWDER COMPOS	GITION (weight pe	rcent)		
Element	Tes	esting method	ASTM	A STM F3001		Status
	i comg metroa		Min	Max		
Aluminum (Al)	A	STM E2371	5.50	6.50	6.34	Conforming
Vanadium (V)	A	STM E2371	3.50	4.50	3.81	Conforming
Iron (Fe)	A	STM E2371		0.25	0.19	Conforming
Oxygen (O)	A	STM E1409		0.13	0.13	Conforming
Carbon (C)	A	STM E1941		0.08	0.03	Conforming
Nitrogen (N)	A	STM E1409		0.05	< 0.01	Conforming
Hydrogen (H)	A	STM E1447		0.012	0.002	Conforming
Yttrium (Y)	A	STM E2371		0.005	< 0.001	Conforming
Other elements, e	ach A:	STM E2371		0.10	< 0.10	Conforming
Other elements, to	otal A:	STM E2371		0.40	< 0.40	Conforming
Titanium (Ti)	A	STM E2371	Bal	Bal	Bal	Conforming
Chemical an	alysis laboratory: Luv	ak Inc. (722 Main S	treet, P.O. Box 59	7, Boylston M/	A, 01505). Report: 0	-85825

POWDER CHARACTERIZATION								
Description	Required	Measured	Status	Description	Required	Measured	Status	
Flow rate per ASTM B213				P	Particle size distribution per ASTM B214			
Flow rate (sec/50 g)	Report	30	NA	*Standard ASTM B214 applies to powder sizes 45 microns and higher. The results are for information only.			s 45 microns on only.	
Apparent density per ASTM B212			Size (µm)	% By Mass	% By Mass			
App density	Desert	2.49	NIA	>45	Report	4.6	NA	
(g/cm ³)	(g/cm ³) Report	2.48	NA	≤45	Report	95.4	NA	
Particle size distribution per ASTM B822								
(Coulter® LS13320)								
D10 (µm)	Report	20	NA					
D50 (µm)	Report	34	NA					
D90 (µm)	Report	46	NA					
<15 µm (% _{by Vol.})	Report	3	NA					
A	Analyses were done by AP&C at their location and reported results are rounded following ASTM E29.							

We hereby certify that the above values conform to the requirements of Purchase Order 656 .

201	8-1	2-1	4
-----	-----	-----	---

a-dd)

Catherine Lavoie

Digitally signed by Catherine Lavoie Date: 2018-12-14 13:16-05:00

Date (yyyy-mm-dd)

Quality department

AP&C submits this certification as the confidential property of the client. It shall not be reproduced except in full, without the written approval of Quality department of AP&C. The recording of faise, fictitious, or fraudulent statements or entries on the certificate may be punished as a felony under federal law.

DAY 1 PART 2

Stages of Development

Description of the stages of new production from design to qualified product and process

Co-funded by the Erasmus+ Programme of the European Union

Main stages

REQUIREMENTS

CAPTURE

Product Design and Development

Risk analysis at the beginning of the design process is a **new practice** being implemented across manufacturing industry. Historically, engineers would design and then carry out risk analysis which is more costly.

Example: ISO Medical Device 13485

Designed to capture risk at the beginning of the design process.

PRODUCT DESIGN FOR MANUFACTURE AND ASSEMBLY

DAY 1 PART 2

IMRAM Additive Manufacturing Adoption Framework

Co-funded by the Erasmus+ Programme of the European Union

New Product Development Flow

Sieved powder pneumatically transported using Argon

Exemplar II – Hip Stem

VoX Voice of the Customer & the Voice of Business.

If these voices fail to align in agreement, then the product is not viable.

IMR uniquely created what we call the **Voice of Technology** integrated throughout the workflow.

Assessment of VoX Findings

Design Process – AM Advantages

As part of the AM Design Process a number of key advantages were identified

- Rapid prototyping on production machine.
- Agile Design process
- Rapid Virtual Iteration
- Statistically Driven Design

Process Design and Development

Numerous steps

PROCESS CAPABILITY (GEOMETRY AND MATERIAL PROPERTIES)

PROCESS FLOW AND OPERATING WINDOWS

UNDERSTAND LIMITATIONS

author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

porous coupon

powder coupon

metallurgy coupons

Figure 6: Coupon positions for inprocess verification

shear counons

Product and Process Validation

Test, Review, Qualification, Validation

Quality Control

Subcontracting and legal responsibility

Approval Requirements

Production Readiness

Metal Additive Manufacturing

Duty of Care

Maintaining process performance

Maintaining material quality

Throughout production using the qualified process

THANK YOU!

Any questions?

IRISH MANUFACTURING RESEARCH